skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Verma, Dhruv"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of Open-Vocabulary Constructs (OVCs)—ones not known beforehand—in the context of converting natural language (NL) specifications into formal languages (e.g., temporal logic or code). Mod- els fare poorly on OVCs due to a lack of necessary knowledge a priori. In such situations, a domain expert can provide correct constructs at in- ference time based on their preferences or domain knowledge. Our goal is to effectively reuse this inference-time, expert-provided knowledge for future parses without retraining the model. We present dynamic knowledge- augmented parsing (DKAP), where in addition to the input sentence, the model receives (dynamically growing) expert knowledge as a key-value lexicon that associates NL phrases with correct OVC constructs. We pro- pose ROLEX, a retrieval-augmented parsing approach that uses this lexicon. A retriever and a generator are trained to find and use the key-value store to produce the correct parse. A key challenge lies in curating data for this retrieval-augmented parser. We utilize synthetic data generation and the data augmentation techniques on annotated (NL sentence, FL statement) pairs to train the augmented parser. To improve training effectiveness, we propose multiple strategies to teach models to focus on the relevant subset of retrieved knowledge. Finally, we introduce a new evaluation paradigm modeled after the DKAP problem and simulate the scenario across three formalization tasks (NL2LTL, NL2Code, and NL2CMD). Our evaluations show that DKAP is a difficult challenge, and ROLEX helps improve the performance of baseline models by using dynamic expert knowledge effectively. 
    more » « less